publications

An up-to-date list is available on Google Scholar.

2023

  1. GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
    Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander, Adam Sanders, Hatem Helal, and 5 more authors
    arXiv:2302.02947, 2023
  2. Attending to Graph Transformers
    Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek
    arXiv:2302.04181, 2023

2022

  1. Recipe for a general, powerful, scalable graph transformer
    Ladislav RampášekMikhail GalkinVijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini
    In 36th Conference on Neural Information Processing Systems (NeurIPS), 2022
  2. Taxonomy of benchmarks in graph representation learning
    Renming Liu, Semih Cantürk, Frederik Wenkel, Sarah McGuire, Xinyi Wang, Anna Little, Leslie O’Bray, and 5 more authors
    In Learning on Graphs Conference, 2022
  3. Long Range Graph Benchmark
    Vijay Prakash DwivediLadislav RampášekMikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and Dominique Beaini
    In 36th Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2022
  4. GPS++: An Optimised Hybrid MPNN/Transformer for Molecular Property Prediction
    Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander, Adam Sanders, Hatem Helal, and 3 more authors
    arXiv:2212.02229, 2022

2021

  1. Hierarchical graph neural nets can capture long-range interactions
    Ladislav Rampášek, and Guy Wolf
    In 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP), 2021
  2. Towards a Taxonomy of Graph Learning Datasets
    Renming Liu, Semih Cantürk, Frederik Wenkel, Dylan Sandfelder, Devin Kreuzer, Anna Little, Sarah McGuire, and 6 more authors
    arXiv:2110.14809, 2021
  3. Assessing therapy response in patient-derived xenografts
    Janosch Ortmann, Ladislav Rampášek, Elijah Tai, Arvind Singh Mer, Ruoshi Shi, Erin L Stewart, Celine Mascaux, and 4 more authors
    Science Translational Medicine, 2021

2020

  1. Machine learning approaches to drug response prediction: challenges and recent progress
    George Adam, Ladislav Rampášek, Zhaleh Safikhani, Petr Smirnov, Benjamin Haibe-Kains, and Anna Goldenberg
    NPJ precision oncology, 2020
  2. Latent-variable models for drug response prediction and genetic testing
    Ladislav Rampášek
    University of Toronto, 2020

2019

  1. Dr.VAE: improving drug response prediction via modeling of drug perturbation effects
    Ladislav Rampášek, Daniel Hidru, Petr Smirnov, Benjamin Haibe-Kains, and Anna Goldenberg
    Bioinformatics, 2019

2018

  1. Learning from everyday images enables expert-like diagnosis of retinal diseases
    Ladislav Rampášek, and Anna Goldenberg
    Cell, 2018

2016

  1. Cell-free DNA fragment-size distribution analysis for non-invasive prenatal CNV prediction
    Aryan Arbabi, Ladislav Rampášek, and Michael Brudno
    Bioinformatics, 2016
  2. RNA motif search with data-driven element ordering
    Ladislav Rampášek, Randi M Jimenez, Andrej Lupták, Tomáš Vinař, and Broňa Brejová
    BMC Bioinformatics, 2016
  3. TensorFlow: biology’s gateway to deep learning?
    Ladislav Rampášek, and Anna Goldenberg
    Cell systems, 2016

2014

  1. Probabilistic method for detecting copy number variation in a fetal genome using maternal plasma sequencing
    Ladislav Rampášek, Aryan Arbabi, and Michael Brudno
    Bioinformatics, 2014